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Abstract

We propose to study words over a partially ordered alphabet with different weaker kinds of matching
of two words, based on the partial order relation. Fuzzy words are a generalization (refining) of the
concept of partial words, extensively studied within problems arising, e.g., in DNA sequencing. We
provide a few basic results on position of fuzzy closures of languages within the Chomsky hierarchy,
periodicity and conjugacy of fuzzy words, as well as adaptation to fuzzy words of the extended Parikh
matrix morphism - a subword counting tool.
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1 Introduction

In computing sciences, to be able to process any kind of information, the information has to be encoded by
a sequence of symbols. A finite sequence of symbols from some (finite) alphabet is called a word (string).
However, sometimes (e.g., in DNA sequencing) some piece of information may be missing or hidden. This
can be manifested by positions denoting missing symbols in a word. Thus, instead of complete words, only
partial words are to be considered (see, e.g.([?]) for more details). The missing symbols are usually denoted
as ” holes” and denoted by a special symbol, say ⋄ (not belonging to the alphabet Σ under consideration).
The position in the word denoted by ⋄ may contain any symbol from the alphabet Σ. In this sense, the
symbol ⋄ stands for the whole alphabet Σ. What if we know that the missing symbol in a word is just
from a limited subset of Σ? We need another special symbol for this subset, different from ⋄. It is therefore
resonable to consider alphabets with several additional special symbols, corresponding to subsets of Σ. In
fact, a symbol a ∈ Σ may be identified with a symbol for the set {a}. Consequently, it is enough to consider
alphabets consisting of special symbols only. Since these special symbols denote subsets of the original
alphabet, the set inclusion relation induces a partial order relation on the alphabet of the special symbols.
This leads us to consider words over partially ordered alphabets. Based on the initial motivation, we will
introduce a compatibility as a weaker form of equality, in a similar way as it is done for partial words. We
will call words with such weak equality relation ”fuzzy”. Partial words thus become a special case of fuzzy
words. Not all results on partial words admit straight translation to fuzzy words, since many of them are
expressed in terms of the holes count in a partial word, while holes are specific for partial words only.

2 Basic notions

We denote [n] = {1, 2, . . . , n} for n ≥ 0, by default [0] = ∅. Throughout this text Σ = {s1.s2, . . . , sk} denotes
a fixed partially ordered alphabet of size k ≥ 1 with the partial order relation 4. A word w over Σ of length
n ≥ 0 with symbol decomposition w = a1a2 . . . an is a mapping w : [n] → Σ such that w (i) = ai ∈ Σ for
i ∈ [n]. The length of a word w is denoted as |w|. The empty word λ is the only word of length 0. If
not stated otherwise, all words and languages are over Σ. The set of all words over Σ is denoted as Σ∗. A
language over Σ is any subset of Σ∗. We will identify the singleton language L = {w} with the word w a
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word of a unit length w = a, a ∈ Σ, with the symbol a. The mirror image of a word w = a1a2 . . . an is the
word wR = anan−1 . . . a1. The concatenation of two words w1 = a1a1 . . . an and w2 = b1b2 . . . bm is the
word w1w2 = a1a2 . . . anb1b2 . . . bm. If a word w can be expressed as w = tuv then t, u, v are called prefix,
factor, suffix of w, respectively (any of them may be empty). An ordered set ι = {i1 < . . . < im} ⊆ [n],
m ≥ 0, is called subword position in w. The (scattered) subword occurring at position ι in w is the word
σw(ι) = ai1ai2 . . . aim , while ι is referred to as occurrence of σw(ι). We denote by |w|v the number of
occurrences of the subword v in w. The only occurrence of λ in a word w is ∅, thus |w|λ = 1. We will use
the Kronecker δ notation: for two words x, y ∈ Σ∗ we denote δx,y = (if x = y then 1 else 0). For words
w, v ∈ Σ∗ and symbols a, b ∈ Σ we have a rather straightforward equation (see (6.3.3) in [?])

|wa|vb = |w|vb + δa,b |w|v . (1)

3 Fuzzy words

We extend the relation 4 to words from Σ∗ as follows. For x, y ∈ Σ∗, x 4 y if |x| = |y| and x (i) 4 y (i) for
each i ∈ [|x|]. We will sometimes write y < x if x 4 y. If the relation 4 on the set Σ∗ is considered, we will
refer to words from Σ∗ as fuzzy words (though wee will mostly omit the adjective ”fuzzy”). Let x, y ∈ Σ∗.
We will say that x is contained in y if x 4 y. Two words with symbol decompositions x = a0a1 . . . am−1

and y = b0b1 . . . bn−1 are fully compatible (denoted as x ⇑ y) if m = n and, for each 0 ≤ i < n, ai, either
ai 4 bi or bi 4 ai. Thus full compatibility of two words of length 1 means comparability (in the partial order
relation) of the corresponding alphabet symbols. The words x, y are compatible (denoted as x ↑ y) if there
is a word z ∈ Σ∗ such that z 4 x and z 4 y. Two fully compatible words x, y are compatible, since their
the greatest lower bound x ∧ y satisfies x ∧ y 4 x and x ∧ y 4 y. Here x ∧ y denotes the word of the same
length as x and y, which contains at each position i ∈ [|x|] the minimum of x (i) and y (i). We will call a
fuzzy word complete if each symbol in its decomposition is minimal with respect to 4.

Proposition 1 Let v∈ {↑,⇑,4} and let x, y be words of the same length. Then x v y iff for each i ∈ [|x|],
x (i) v y (i).

Corollary 2 Let v∈ {↑,⇑,4} and let x, y be complete words of the same length. Then x v y iff x = y.

Some basic properties of the two relations are summarized in Propositions ?? and ??. Since the relation
< is itself a partial order relation, the assertions on 4 can be easily translated to similar assertions for <.
The same is true for the least upper bound x ∨ y of two fully compatible words x, y, being the word of the
same length as x and y, which contains at each position i ∈ [|x|] the maximum of x (i) and y (i).

Proposition 3 Let u, v, x, y be words and let v∈ {↑,⇑,4}.

1. If x ⇑ y then x ↑ y. 5. If u v v and x v y then ux v vy.
2. If x 4 y or y 4 x then x ⇑ y. 6. If ux v vy and |u| = |v| then u v v and x v y.
3. If x ⇑ y and |x| = |y| = 1 then x 4 y or y 4 x. 7. If x, y are complete then x v y iff x = y.
4. Let v̸=4. Then x v y implies y v x.

Proposition 4 Let x, y, u, v be words, v∈ {↑,⇑,4}. If xu v yv and |x| ≥ |y| then there are words z, t such
that x = zt, z v y, and tu v v.

For v∈ {↑,⇑,4}, the v-closure of a language L is the language Lv = {y ∈ Σ∗|y v x for some x ∈ L}.
Partial words (more precisely their companions - as described in ([?])) may be considered as a special

case of fuzzy words. In this case Σ contains the special symbol ⋄ and, for every symbol a ∈ Σ, a ̸= ⋄, a 4 ⋄,
while no further non-trivial ordering relationship is valid. In this case strong compatibility and compatibility
coincide.
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4 The fuzzy closures and the Chomsky hierarchy

It is natural to investigate the relationship between the Chomsky type of a language and the Chomsky
type of its closure. The basic relationship is described in the following theorem. For definitions of formal
grammars, Chomsky hierarchy and related terms used in this section see [?].

Theorem 5 Let i ∈ {0, 1, 2, 3} and v∈ {↑,⇑,4}.
1. For Σ a partially ordered alphabet Σ, if L ⊆ Σ∗ is a language of Chomsky type i then Lv is of type i.
2. There is a language L over a (totally) ordered alphabet Σ = {a 4 b}, a ̸= b, of type i, which (for i ̸= 3)
is not of type i+ 1, such that Lv is a regular language.

5 Periodicity and conjugacy

Periodicity of fuzzy words, as in the case of partial words, can be considered in a strong and a weak way. Let
v∈ {↑,⇑,4}. A (strong) v-period of a word x is a positive integer p such that, for 1 ≤ i, j ≤ |u|, u (i) v u (j)
whenever i ≡ jmod p. A weak v-period of a word x is a positive integer p such that u (i) v u (i+ p) whenever
1 ≤ i, i+ p ≤ |u|. A word having a (strong)/ weak v-period p is called p,v-periodic/weakly p,v-periodic,
respectively. A word u is primitive if vi 4 u implies i = 1 for each word v. Two words u, v are v-conjugate
if there are two words x, y such that xy v u and yx v v. The following Proposition is implied by Corollary
??.

Proposition 6 Let v∈ {↑,⇑,4} and let u be a complete word with a strong or weak v-period p. Then there
are unique complete words x, y such that |x+ y| = p, |x| < p, and u = (xy)

n
x.

Theorem 7 Let v∈ {↑,⇑,4}. Let u, v, z be words, u ̸= λ ̸= v. Then
1. If uz v zv then uz, zv, and uzv are weakly |u| ,v-periodic.
2. If uzv is weakly |u| ,v-periodic then uz v zv.
3. If uz, zv are weakly |u| ,v-periodic and |z| ≥ |u| then uz v zv.
4. If uz v zv and there exists a complete word α, such that α 4 uz and α 4 zv, and α is |u| ,v-periodic,
then xy 4 u, yx 4 v and (xy)

n
x 4 z for some words x, y and n ≥ 0.

6 Subword counts and extended Parikh matrices

The Parikh mapping ([?]) assigns to each word w the vector [|w|s1 , |w|s2 , . . . , |w|sk ]. Consider a word u
with symbol decomposition u = a1a2 · · · am,m ≥ 1. The extended Parikh matrix mapping ([?]) assigns to
each word w the upper-triangular (m + 1) × (m + 1) matrix Ψu(w) where the main diagonal consists of
1’s and, for 1 ≤ i ≤ j ≤ m, the (i, j + 1)-th element is |w|aiai+1···aj . Ψu is a morphism s mapping string
concatenation to matrix product. In the case u = s1s2 · · · sk the mapping Ψu is the Parikh matrix mapping
(originally introduced in [?]) denoted as Ψk and Ψk(w) is the Parikh matrix of the word w. (Extended)
Parikh matrices and are useful tools for investigation of subword occurrences in words.

We will consider different weaker forms of word occurrences, based on relations from {↑,⇑,4}. We will
extend the definition of the occurrence of a subword in a word to fuzzy words. Let v∈ {↑,⇑,4}. We first
extend the definition of our Kronecker-like symbol - we denote the extension as δv. For two words x, y ∈ Σ∗

we denote δvx,y = (if x v y then 1 else 0). Observe that, for complete words x, y, δvx,y = δx,y and, for
v∈ {↑,⇑}, δvx,y = δvy,x, which is generally not true for v=4. Let w be a word with symbol decomposition
w = a0a1 . . . an−1 The (scattered) subword σw(ι) occurring at position ι in w is a v-occurrence of a word
v if v v σi (ι). We denote by |w|vv the number of v-occurrences of the subword v in w.

Example 8 Let Σ = {a, b, c, d} with the only non-trivial partial order relationships being a 4 d, b 4 d,
c 4 d. The word accdcbdab contains 6 ⇑-occurrences (being ↑-occurrences, as well) of the subword bdab:
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{3, 4, 6, 8} , {3, 4, 7, 8} , {3, 5, 6, 8} , {3, 5, 7, 8} , {3, 6, 7, 8} and {5, 6, 7, 8}, however , just 2 4-occurrences of

the word bdba: {3, 6, 7, 8} and {5, 6, 7, 8} . Thus |accdcbdab|⇑bdab = 6 and |accdcbdab|4bdab = 2 .

The equality (??) can be extended to fuzzy words in the following way. Let w, v ∈ Σ∗, a, b ∈ Σ. Then

|wa|vvb = |w|vvb + δvb,a |w|
v
v . (2)

Consider a word u with symbol decomposition u = b1b2 · · · bm, m ≥ 1. Denote, for 1 ≤ i ≤ j ≤ m + 1,
ui,j = bib2 · · · bj−1 (by default, ui,i = λ) and ui = u1,i. Let Mp denote the set of all upper-triangular p× p
matrices over real numbers, with the main diagonal consisting entirely of 1’s. For v∈ {↑,⇑,4}, we define
a morphism Ψv

u : Σ∗ → Mm+1 as [Ψv
u (a)]i,j = δvuj ,ui

+ δvuj ,uia, for a ∈ Σ, 1 ≤ i, j ≤ m + 1. Observe that,
since the words ui are of distinct length, δvui,uj

= δui,uj and δvuj ,uia = 1 iff j = i+ 1 and δvbj ,a = 1.

Theorem 9 Let v∈ {↑,⇑,4} and w ∈ Σ∗. Then for each 1 ≤ i ≤ j ≤ m+ 1, [Ψv
u (w)]i,j = |w|vui,j

.

In the remaining part of this section we will deal with formal power series. A formal power series (with
integer coefficients) over Σ is a mapping x :Σ∗ → Z, where Z is the ring of integers. Following the usual
conventions, we denote the value x(α) as ⟨x, α⟩ and express x as

∑
v∈Σ∗ ⟨x, v⟩ v. The support of x is the

set {v ∈ Σ∗| ⟨x, v⟩ ̸= 0}. The set of all power series over Σ, together with the sum and product operations
defined as ⟨x+ y, α⟩ = ⟨x, α⟩+ ⟨y, α⟩, ⟨x · y, α⟩ =

∑
uv=α ⟨x, u⟩ ⟨y, v⟩, respectively, forms a ring denoted as

Z ⟨⟨Σ⟩⟩ . Basic information on formal power series can be found in ([?]) , as well as in ([?]). Our aim is to
adapt the extended Parikh mapping from ([?]) to fuzzy words. We consider a finite factorial (i.e., containing
with each word all its factors) language L ⊆ Σ∗ and the set ZL consisting of all formal power series from
Z ⟨⟨Σ⟩⟩ with support being a subset of L. It is proved in ([?]) that ZL is a ring. The L-projection of a
series x ∈ Z ⟨⟨Σ⟩⟩ is the series πL(x) =

∑
v∈L ⟨x, v⟩ v ∈ ZL. It was proved in ([?]) that the extended Parikh

morphism ΠL : Σ∗ → ZL defined as ΠL = πL ◦ µ, satisfies ΠL(w) =
∑

v∈L |w|vv for any word w. Here µ :
Σ∗ → Z ⟨⟨Σ⟩⟩ is the Magnus (monoid) morphism defined, for si ∈ Σ, as µ(si) = 1 + si. In a similar way, we
define, for v∈ {↑,⇑,4}, the fuzzy Magnus morphism µv : Σ∗ → Z ⟨⟨Σ⟩⟩ as µv(si) = 1+

∑
avsi

a. Then the
extended fuzzy Parikh morphism Πv

L : Σ∗ → ZL is defined as Πv
L = πL ◦ µv.

Theorem 10 Let L be a finite factorial language and v∈ {↑,⇑,4}. Then, for each word w ∈ Σ∗, Πv
L (w) =∑

v∈L |w|vv v.

Again, as in ([?]), equality of the inverse Parikh series of a word (which always exists) and the so-called
alternate series of the word’s mirror image can be proved The alternate series of x ∈ Z ⟨⟨Σ⟩⟩ is defined as
x =

∑
v(−1)|v| ⟨x, v⟩ v. It is easy to check that the mapping x 7→ x is a ring morphism.

Theorem 11 Let v∈ {↑,⇑,4}. Let L be a factorial language, not containing any word bc, such that bc v aa

for some symbol a ∈ Σ. Let w ∈ Σ∗. Then, in ZL, ΠL(w)
−1 = ΠL(wR).
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